8.5 Selecting the Mth Largest 333

SUBROUTINE rank(n,indx,irank)

INTEGER n,indx(n),irank(n)
Given indx (1:n) asoutput from the routine indexx, this routine returns an array irank(1:n),
the corresponding table of ranks.

INTEGER j

do1 j=1,n
irank(indx(j))=j

enddo 11

return

END

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. ($aat five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a sing
returned value: What is theh smallest (or, equivalently, the = N +1—kth largest)
element out ofV elements? The fastest methods for selection do, unfortunately,<
rearrange the array for their own computational purposes, typically putting all smaller
elements to the left of théth, all larger elements to the right, and scrambling the 3
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of itis taxing=
on memory, or when the computational burden of the selection is a negligible parta.
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Sunlplace selection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a se
of data. One often wants to know the median element in an array, or the top an
bottom quartile elements. WheN is odd, the median is thkth element, with
k = (N+1)/2. WhenN is even, statistics books define the median as the arithmetic :
mean of the elements = N/2 andk = N/2 + 1 (that is, N/2 from the bottom
andN/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. Por> 100 we usually defings = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangemeaat;tit on-
ing, exactly as was done in the Quicksort algorith§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to th
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels™B.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our debired
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales/dsrather than asV log N (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

uo edgpwy LIlJON) €2¥.-2/8-008-T |led Io LUO:)'JU'MMM//Zd],lI.]

el

IHAIBSISNI103

e

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apows si ‘1eIindwod 1aalas Aue o} (suo siyy Buipnjoul) saji a|jqepeal

abpu

s1no) Bio

Rouswy yuoN ap

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

334 Chapter 8. Sorting

FUNCTION select(k,n,arr)

INTEGER k,n

REAL select,arr(n)
Returns the kth smallest value in the array arr(1:n). The input array will be rearranged
to have this value in location arr (k), with all smaller elements moved to arr(1:k-1) (in
arbitrary order) and all larger elements in arr [k+1..n] (also in arbitrary order).

INTEGER 1i,ir,j,1,mid

REAL a,temp
1=1
ir=n
if(ir-1.le.1)then Active partition contains 1 or 2 elements.
if(ir-1.eq.1)then Active partition contains 2 elements.
if (arr(ir).1lt.arr(1))then
temp=arr (1)

arr(1l)=arr(ir)
arr(ir)=temp

endif
endif
select=arr (k)
return
else
mid=(1+ir)/2 Choose median of left, center, and right elements as par-
temp=arr (mid) titioning element a. Also rearrange so that arr(1) <
arr (mid)=arr(1+1) arr(1+1), arr(ir) > arr(1+1).

arr (1+1)=temp

if (arr(1).gt.arr(ir))then
temp=arr (1)
arr(1l)=arr(ir)
arr (ir)=temp

endif

if (arr(1+1) .gt.arr(ir))then
temp=arr (1+1)
arr(1+1)=arr(ir)
arr (ir)=temp

endif

if (arr(1l) .gt.arr(1+1))then
temp=arr(1l)
arr(l)=arr(1+1)
arr(1+1)=temp

endif
i=1+1 Initialize pointers for partitioning.
j=ir
a=arr(1+1) Partitioning element.
continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.
if (arr(i).1lt.a)goto 3
continue
j=j-1 Scan down to find element < a.
if (arr(j).gt.a)goto 4
if(j.1t.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr (i) Exchange elements.

arr(i)=arr(j)
arr(j)=temp

goto 3 End of innermost loop.
arr(1+1)=arr(j) Insert partitioning element.
arr(j)=a
if(j.ge.k)ir=j-1 Keep active the partition that contains the kth element.
if(j.le.k)1=i
endif
goto 1

END

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

8.5 Selecting the Mth Largest 335

In-place, nondestructive, selection is conceptually simple, but it requires a lot
of bookkeeping, and it is correspondingly slower. The general idea is to pick some
numberM of elements at random, to sort them, and then to make a pass through
the arraycounting how many elements fall in each of tié + 1 intervals defined
by these elements. Thgh largest will fall in one such interval — call it the “live”
interval. One then does a second round, first pickihgandom elements in the live
interval, and then determining which of the new, finef,+ 1 intervals all presently
live elements fall into. And so on, until thagh element is finally localized within a
single array of sizeV/, at which point direct selection is possible.

How shall we pickM? The number of rounddog ,; N = log, N/log, M,
will be smaller if M is larger; but the work to locate each element aménhg- 1
subintervals will be larger, scaling dsg, M for bisection, say. Each round
requires looking at allV elements, if only to find those that are still alive, while
the bisections are dominated by th&that occur in the first round. Minimizing
O(N log,; N) + O(N log, M) thus yields the result

M ~ 2Vice2 N (8.5.1)

The square root of the logarithm is so slowly varying that secondary considerations o
machine timing become important. We use= 64 as a convenient constant value.
Two minor additional tricks in the following routineelip, are (i) augmenting
the set ofM random values by an/ + 1st, the arithmetic mean, and (ii) choosing
the M random values “on the fly” in a pass through the data, by a method that make
later values no less likely to be chosen than earlier ones. (The underlying idea is t
give elementn > M an M /m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

WY YUON) £21/-2/8-008-T [[€9 10 W09 Ju mmm//:dny

% ‘(Aluo eoua

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

FUNCTION selip(k,n,arr)
INTEGER k,n,M
REAL selip,arr(n),BIG
PARAMETER (M=64,BIG=1.E30)
Returns the kth smallest value in the array arr(1:n). The input array is not altered.
USES shel |
INTEGER i,j,jl,jm,ju,kk,mm,nlo,nxtmm,isel (M+2)
REAL ahi,alo,sum,sel(M+2)
if(k.1t.1.or.k.gt.n.or.n.le.0) pause ’bad input to selip’

“(B2UBWY YUON apisino) Bio-aBpLgwes @AIasisna1aalip o} [rews pids

kk=k
ahi=BIG
alo=-BIG
continue Main iteration loop, until desired element is isolated.
mm=0
nlo=0
sum=0.
nxtmm=M+1
do11 i=1,n Make a pass through the whole array.
if(arr(i).ge.alo.and.arr(i).le.ahi)then Consider only elements in the cur-
mm=mm+1 rent brackets.
if (arr(i) .eq.alo) nlo=nlo+1 In case of ties for low bracket.
if (mm.le.M)then Statistical procedure for selecting m in-range elements
sel(mm)=arr(i) with equal probability, even without knowing in

else if (mm.eq.nxtmm)then advance how many there are!

nxtmm=mm-+mm/M

sel (1+mod (i+mm+kk,M))=arr (i) The mod function provides a some-
endif what random number.
sum=sum+arr (i)

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

336 Chapter 8. Sorting

endif
enddo 11
if(kk.le.nlo)then Desired element is tied for lower bound; return it.
selip=alo
return
else if (mm.le.M)then All in-range elements were kept. So return answer by
call shell(mm,sel) direct method.
selip=sel (kk)
return
endif Augment selected set by mean value (fixes degenera-
sel(M+1)=sum/mm cies), and sort it.

call shell(M+1,sel)
sel(M+2)=ahi

do 12 j=1,M+2 Zero the count array.
isel(j)=0
enddo 12
do 13 i=1,n Make another pass through the whole array.
if(arr(i).ge.alo.and.arr(i).le.ahi)then For each in-range element..
31=0
ju=M+2
if (ju-jl.gt.1)then ...find its position among the select by bisection...

jm=(ju+j1) /2
if (arr(i).ge.sel(jm))then
jl=jm
else
ju=jm
endif
goto 2
endif
isel(ju)=isel(ju)+1 ...and increment the counter.
endif
enddo 13
j=1 Now we can narrow the bounds to just one bin, that
if (kk.gt.isel(j))then is, by a factor of order m.
alo=sel(j)
kk=kk-isel(j)
=3+
goto 3
endif
ahi=sel(j)
goto 1
END

Approximate timings:selip is about 10 times slower thatelect. Indeed,
for N in the range ofv 10°, selip is about 1.5 times slower than a full sort with
sort, while select is about 6 times faster thasort. You should weigh time
against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases o

ON @pIsIno) 610 abpLqUWed @AISSISN21081IP 0] [lews puas Jo ‘(AJUo BoUBWY YUON) £2t/-2/8-008-T (129 10 W0 iu mmm/:dny
SINOYAD 10 s)00q sadioay [eauswnp Japlo o] ‘panuqgiyoid Apowis si ‘4emndwod 1anias Aue 01 (auo siyl Buipnjour) sajiy ajgqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

finding the largest, or smallest, element in an array. Those cases, you code by har1§_<
as simpledo loops. There are also good ways to code the case whisrsodest in 2z
comparison taV, so that extra memory of ordéris not burdensome. An example gi
is to use the method of Heapso§B(3) to make a single pass through an array of = Z

length N while saving then largest elements. The advantage of the heap structure
is that onlylog m, rather thann, comparisons are required every time a new element
is added to the candidate list. This becomes a real savings wherO(\/N), but

it never hurts otherwise and is easy to code. The following program gives the idea.

SUBROUTINE hpsel(m,n,arr,heap)
INTEGER m,n

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

8.6 Determination of Equivalence Classes 337

REAL arr(n),heap(m)

USES sort
Returns in heap(1:m) the largest m elements of the array arr(1:n), with heap(1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m < n.

INTEGER 1i,j,k

REAL swap

if (m.gt.n/2.or.m.1t.1) pause ’probable misuse of hpsel’

do11 i=1,m
heap(i)=arr(i)

enddo 11
call sort(m,heap) Create initial heap by overkilll We assume m < n.
do 12 i=m+1,n For each remaining element...

if (arr(i).gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1
continue Sift down.
k=2%j
if(k.gt.m)goto 2
if (k.ne.m)then
if (heap(k) .gt.heap(k+1))k=k+1
endif
if (heap(j).le.heap(k))goto 2
swap=heap (k)
heap (k) =heap(j)
heap (j)=swap
j=k
goto 1
continue
endif
enddo 12
return
end

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose detai
are beyond the scope of this book, for example, trees, linked lists, etc. These structures a
their manipulations are the bread and butter of computer science, as distinct from numeric

analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manlpulatlon
namely the determination of equivalence classes, arises sufficiently often to justify inclusion

here.

The problem is this: There af¥ “elements” (or “data points” or whatever), numbered

@HN opIsino) B10°aBpLUIRI@AISSISN0108.IP O] [leWS Puas 4o ‘(AJuo eauaWwy YUON) £27/-2/8-008-T |22 10 Wod"Ju mmm//:dny

(eou&h@

3)ISgaMm JISIA 'SINOXAD 10 $00q Sa

dioay [eouswnp JapJto o] ‘pauqiyoid Apowis si ‘4emndwod Janias Aue 01 (auo siyl Buipnjour) sajiy ajgqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

,N. You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For example,
you may have a list of facts like: “Element 3 and element 7 are in the same class; element

19 and element 4 are in the same class; element 7 and element 12 are in the same ¢lass,

Alternatively, you may have a procedure, given the numbers of two elemnjeantsl &, for

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

